A FUNDAMENTAL PROPERTY OF MOS TRANSISTORS
(AND ITS CIRCUIT IMPLICATIONS)

E. Vittoz, EPFL, Lausanne
eric.vittoz@ieee.org

EKV 2.6 User's meeting, EPF-Lausanne, November 4, 2004
INTRODUCTION

• Goals of compact transistor modeling:
 • simulation by quantitative calculation on computer
 • **highlighting properties** to facilitate
 - **understanding** circuits
 - synthesis of **robust** circuits

• Best models: combine both goals by hierarchical structure example: EKV model.

• EKV approach will be used to introduce and discuss a **fundamental property**. [1]
DEFINITIONS

for EKV model [2,3]

• Substrate referred-voltages V_S, V_D, V_G

• Position x along the channel

• Local "channel voltage" V

splitting of quasi-Fermi levels due non-0 V_S and/or V_D

$V = V_S$ at source

$V = V_D$ at drain

n-channel: holes at equilibrium

thus $V = $ electron quasi-Fermi level + constant.
• For a long and wide channel:

\[I_D = \mu W(-Q_i) \frac{dV}{dx} = \frac{F(V, V_G)dV}{G(x, V_G)dx} \]

• Condition: separable in \(V \) and \(x \)

\[\int_0^L \mathbf{G}dx = \int_0^V \mathbf{F}dV \equiv \int_{V_S}^{\infty} \mathbf{F}dV - \int_{V_D}^{\infty} \mathbf{F}dV \]

thus:

\[I_D = I(V_S, V_G) - I(V_D, V_G) \]
The drain current is the superposition of independent and symmetrical effects of source and drain voltages.

Definitions:
- **Forward** current $I_F = I(V_S, V_G)$, independent of V_D
- **Reverse** current $I_R = I(V_D, V_G)$, independent of V_S

Then $I_D = I_F - I_R$
• Mobile charge Q_i depends on surface potential Ψ_s, and $\Psi_s = f(V)$, thus Q_i should not be a (direct) function of x to be part of F. Therefore:

- $V_G - V_{FB}$ must be independent of position x along the channel: **homogeneous channel.**
- C_{ox} but may depend on Ψ_s or V (or z for N_b) (e.g.: $C_{ox}(\Psi_s)$: polydepletion)

DOMAIN OF VALIDITY (1)

$$\mu W(-Q_i) = \frac{F(V, V_G)}{G(x, V_G)}$$

with:

$$-Q_i = C_{ox}(V_G - V_{FB} - \Psi_s) - \sqrt{2qN_b\varepsilon_{si}\Psi_s}$$

total charge
depletion charge Q_b
DOMAIN OF VALIDITY (2)

- Condition:
 \[\mu W(-Q_i) = \frac{F(V, V_G)}{G(x, V_G)} \]

- \(W \) is independent of \(V \); thus:
 - part of \(G \), may depend on \(x \): \(\Rightarrow \) any shape of channel.

- Mobility \(\mu \) depends on vertical field thus on \(\Psi_S \), thus
 - included in \(F \), provided velocity \(v \ll v_{sat} \)
 (otherwise depends on \(I_D \) itself)

- Furthermore, the effective value of \(L \) along which \(G(x, V_G) \)
 is integrated must be independent of \(I_D, V_S \) and \(V_D \).
EFFECT OF NARROW CHANNEL

- Increased importance of side effects.
- Equivalent to parallel connection of several transistors with different characteristics.
 - if each transistor \(i \) fulfills
 \[
 I_{Di} = I_i(V_S, V_G) - I_i(V_D, V_G)
 \]
 - then the sum \(I_D \) of \(I_{Di} \) fulfills it as well.
- The property is not degraded.
The fundamental property is available

- For long and homogeneous channel
- Independently of channel shape
- Independently of \(N_b(z) \)
- Even if the channel is very narrow
- Even for large gate voltages reducing the mobility
- Even with polydepletion.
CAUSES OF DEGRADATION (1)

- Non homogeneous channel: Q_i direct function of x.

$$Q_i = -C_{ox}(V_G - V_{FB} - \Psi_s) + \sqrt{2qN_b\varepsilon_{si}}\Psi_s$$

There may be variations with position x in the channel...

- of substrate doping N_b, which can be
 - intentional (e.g.: LDD)
 - artifact of process (gradient or piling-up)
 (always present at very ends of channel)

- of flat-band voltage V_{FB}, caused by
 - variation of N_b
 - variation of charge in oxide

- of effective C_{ox}, always present at very ends of channel.
• Weak inversion characterized by $Q_i \ll Q_b$, therefore:
 • Q_i has negligible effect on potential and field

• Can be expressed as $-Q_i = G_q(\Psi_s) e^{-V/UT}$
 • with Ψ_s independent of V, thus:
 • G_q can be any function of x and is included in G, therefore:

• The property is valid even if the channel is not homogeneous.

• Mobility μ independent of V(small vert. field), thus part of G, F is reduced to $F = e^{-V/UT}$: independent of V_G.
CAUSES OF DEGRADATION (2)

- Channel long \Rightarrow non-long \Rightarrow short
 - property progressively degraded by...
 - several independent mechanisms:

a. Voltage effects:
 - channel length modulation
 - I_F or I_R becomes function of both V_D and V_S
 - effect proportional to $1/L$
 - barrier lowering and 2-D effects: further degradation.

b. Current effects:
 - if I_D is increased by reducing L, then
 \Rightarrow carrier velocity increases towards saturation
 \Rightarrow mobility reduced, thus function of I_D

c. Non-homogeneous channel (except in weak inversion):
 - importance of end-effects proportional to $1/L$.
CONCEPT OF PSEUDO-RESISTOR

- We have shown that:
 \[I_D = \frac{1}{L} \int_0^L G_d x \left[\int_{V_s}^\infty F_d V - \int_{V_D}^\infty F_d V \right] \]

- Definitions:
 - pseudo-voltage:
 \[V^* = -K_0 \int_{V}^\infty F(V, V_G) dV \]
 - pseudo-resistor:
 \[R^* = K_0 \int_0^L G(x, V_G) dx \]

(where \(K_0 \): any positive constant)

- Results in pseudo Ohm's Law:
 \[I_D = (V_D^* - V_S^*)/R^* \]
- 14 -

LINEAR CURRENT-MODE CIRCUITS

• Implications of pseudo Ohm's law \(I_D = (V_D^* - V_S^*)/R^* \)

• Any network interconnecting transistors with same \(F(V, V_G) \) and same \(V_G \) is linear with respect to currents.

• Any circuit of linear resistors can be implemented by transistors only, provided only currents are considered.

• A resistor connected to ground \((V=0) \) in the resistive prototype corresponds to a saturated transistor that provides a pseudo-ground \((V^*=0) \).

• In weak inversion:
 • \(F \) indep. of \(V_G \), but \(V_G \) included in function \(G \), hence:
 • Different \(V_G \) possible for each transistor
 • Each \(R^* \) can be separately adjusted by its \(V_G \)
EXAMPLE OF APPLICATION OF PSEUDO-R

- Large-ratio current mirror
 - Use series/parallel combination of...
 - identical transistors, all in same substrate

- transistor circuit:
 - pseudo-resistor prototype:

\[\frac{I_2}{I_1} = 16 \]

pseudo-ground 0*

\[\text{ground 0} \]
EXAMPLE OF APPLICATION IN WEAK INVERSION

• Calculation of harmonic mean \([7]\)

- Series combination of \(G_i\): \(G = \frac{1}{\sum 1/G_i}\) harmonic mean

- Same voltage across \(G\) and \(G_i\), thus \(I = \frac{1}{\sum 1/I_i} = \frac{I_{hm}}{N}\)
APPLICATIONS OF PSEUDO-RESISTORS

• Simplification of circuit analysis
• Linear attenuators [4] (electrical control in weak inversion)
 • R-2R network for D/A conversion [8].
• Spatial information processing:
 • nth oder moment computation $[9,6,10,11]$
 • diffusion networks (isotropic or not) $[12,6]$
 • 2-D emulation of physical media $[13,6]$
• In weak inversion: exploitation of current distribution in voltage- (or current-) dependent linear networks:
 • local normalisation in vision processing $[14,6]$
 • generation of nonlinear functions $[6, 15]$
 • energy minimizers.....
CONCLUSION

• MOS property for long and homogeneous channels:

\[I_D = I(V_S, V_G) - I(V_D, V_G) = I_F - I_R \]

• superposition of independent and symmetrical effects of S and D voltages.
• forward and reverse components.

• Property progressively degraded when channel shortened.

• Underlies the concept of pseudoresistor:
 • linear current mode circuits
 • transistor implementation of arrays of resistors.
 • simpler analysis of transistor circuits.
REFERENCES

