Compact Device Modeling Using Velilogo-A and ADMS

Laurent Lemaitre, Colin Mc Andrew, Wladek Grabinski
Laurent.Lemaitre@motorola.com

Motorola, Geneva Modeling Center
207 route de Ferney
CH-1218 Le Grand Saconnex
Compact Device Modeling Using Velilog-A and ADMS

Outline:

Developments of the Compact Models
Device Model Implementation Today
ADMS - Device Model Generator
Overview of the Device Model Generator
Example of Model Generation
Implementation of EKV 2.6 in ADS
Current Status - Availability
Conclusion
Developments of the Compact Models

- Number of DC model parameters vs. year of the model introduction
 - Significant growth of the parameter number that includes geometry (W/L) scaling
 - Most recent versions of the EKV, HiSIM, MM, PCIM and SP models are included
What is a Device Model?

PROGRAMMER:
- Electrical Circuit Simulator
 - Spectre, ADS, Mica...
- Model c-code

DESIGNER:
- Spice netlists
- + Process libraries (model parameters)
- Simulation Results

DEVICE MODELING ENGINEER:
- Built-in Device Model Equations
 - VBIC, EKV, SP, MOSCAP, R3, ..
Model Implementation Today

Device Modeling Engineer:
- provides equations of new model to programmer. **No standard.**

Programmer:
- hand-codes the model in source code of the electrical circuit simulator (most of the time the language is C). **No standard.**

- C code must comply with the Simulator Programming Interface. Much coding needs to be done again for each simulator.

- C code involves the manual computation and coding of partial derivatives. This process is tedious and error-prone.

- Feedback to the Device Modeling Engineer is made difficult. C-code is hard to read.

- The process is a barrier to model maintenance and enhancement.
ADMS Approach

- ADMS is a Code Generator from a high-level language to ready-to-compile C code for simulators
- ADMS uses Verilog-AMS as a description language for device models. Verilog-AMS is a behavioral description language for mixed-signal electrical circuits.
 - Verilog-AMS code easy to read - no extra code specific to simulators.
 - Model can be easily and completely tested prior implementation!
- ADMS uses a subset of XML as an intermediate language between Verilog-AMS and Simulator Programming Interfaces.
 - Simplifies development of new features of ADMS and support of multiple simulators
ADMS Model Generator

STANDARD 1: MODEL LEVEL

Verilog-AMS Model Code

Parsing

XML Internal data

DTD based validation

Code Generator

C code
Mica, Spectre,
Hsim, ADS, …

Other applications

Documentation,
Circuit Test Benches

STANDARD 2: SIMULATOR LEVEL

Testing prior implementation
Example – Symbolic View

Bipolar Device Model

- Branch assignment in the HBT model
Example – Verilog-AMS

`define NPN +1
`define PNP -1

module BIP (c,b,e);

// Nodes
 input c,b; // input nodes
 output e; // output nodes
 electrical c,b,e; // all electrical

// Branches
 branch (b,c) bc;
 branch (c,e) ce;
 branch (e,c) ec;
 branch (b,e) be;
Example – Verilog-AMS (cont.)

// Parameters
parameter real is = 1.0e-16;
parameter real bf = 100;
parameter real br = 1;
parameter real nf = 1.0;
parameter real nr = 1.0;
parameter integer type = ‘NPN;

// Variables
real Tdev, Vtv;
real Ifi, Ibf;
real Iri, Ibr;
real argf, expf;
Example – Verilog-AMS (cont.)

analog begin // Analog section
 Tdev = $temperature;
 Vtv = 1.380662e-23 * Tdev / 1.602189e-19;
 if (type == 'NPN) begin
 argf = V(be) / (nf * Vtv);
 end else if (type == 'PNP) begin

 expf = exp(argf);
 Ifi = is * (expf-1.0);
 Ibf = Ifi/bf;
 begin
 I(ce) <+ Ifi; // FORWARD Transport C-E
 I(be) <+ Ibf; // FORWARD Diode B-E
 end
Example – Code for Spectre

- Run admsSpectre
- BIPOLAR TRANSISTOR in VERILOG-AMS
- Ready-to-compile C code
- SPECTREinterface.h
- BIPdefs.h
- BIPinitParameter.c
- BIPloadJacobian.c
- BIPevaluateStatic.c
- BIPevaluateDynamic.c
Example – Test-bench Circuit

- Automatically Generated by ADMS
Example – Comparisons

<table>
<thead>
<tr>
<th>Spectre</th>
<th>Mica</th>
<th>ADS</th>
</tr>
</thead>
<tbody>
<tr>
<td>spectre (ver. 4.4.3). DC Analysis `opPoint' Operating at T = 27 C. V(Bint) = 650.428 mV V(Cint) = 921.346 mV V(Eint) = 79.0034 mV I(vb:p) = -349.572 uA I(vc:p) = -78.6538 mA</td>
<td>Using mica1.2.0 DC analysis Note: temp set to 27 v#Bint = 650.4275 mV v#Cint = 921.3462 mV v#Eint = 79.00338 mV vb#i = -349.572 uA vc#i = -78.6538 mA</td>
<td>Ads(ver. "170") © Agilent Technologies DC Operating Point: V(Bint) = 650.428 mV V(Cint) = 921.346 mV V(Eint) = 79.0034 mV vb.i = -349.572 uA vc.i = -78.6538 mA</td>
</tr>
</tbody>
</table>

- ADMS generated model yields numerically identical results
Example - EKV ADS Implementation

The ADS EKV code was generated by ADMS tool using the EKV Verilog-AMS description: legwww.epfl.ch/ekv/verilog-a
Work in Progress

• Models available in Verilog-AMS:
 – R3 (Three Terminal Resistor)
 – MOSCAP (MOS varactor)
 – VBIC with self-heating (BJT)
 – SSIM (MOSFET, Motorola)
 – SP (MOSFET, PSU Prof. Gildenblatt)
 – EKV 2.6 (MOSFET, LEG-EPFL)

• All models are available in ADS (Agilent), Spectre (Cadence) and Mica (internal Motorola simulator)

• Some good results obtained with HSIM

• Looking into: Nanosim (Synopsys) and Eldo (Mentor)
Availability

- **ADMS** is written in the C language
- **ADMS** planned to be open-source
- Will come with public domain models (R3, MOSCAP, VBIC)
- On-going discussions with semiconductor and CAD vendors, and device modelers, on the best way to manage and control ADMS open-source
Conclusion

• **ADMS** = automatic implementation of compact models into circuit simulators

• **ADMS** automatically generates efficient, robust, correct-by-construction code

• **ADMS** has been successfully used for the integration of new device models into Mica, Spectre, HSIM and ADS

• Compact models are defined by Verilog-AMS, a standard high-level behavioral language